Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Lancet Infect Dis ; 22(4): 496-506, 2022 04.
Article in English | MEDLINE | ID: covidwho-1839428

ABSTRACT

BACKGROUND: Bedaquiline improves outcomes of patients with rifampicin-resistant and multidrug-resistant (MDR) tuberculosis; however, emerging resistance threatens this success. We did a cross-sectional and longitudinal analysis evaluating the epidemiology, genetic basis, and treatment outcomes associated with bedaquiline resistance, using data from South Africa (2015-19). METHODS: Patients with drug-resistant tuberculosis starting bedaquiline-based treatment had surveillance samples submitted at baseline, month 2, and month 6, along with demographic information. Culture-positive baseline and post-baseline isolates had phenotypic resistance determined. Eligible patients were aged 12 years or older with a positive culture sample at baseline or, if the sample was invalid or negative, a sample within 30 days of the baseline sample submitted for bedaquiline drug susceptibility testing. For the longitudinal study, the first surveillance sample had to be phenotypically susceptible to bedaquiline for inclusion. Whole-genome sequencing was done on bedaquiline-resistant isolates and a subset of bedaquiline-susceptible isolates. The National Institute for Communicable Diseases tuberculosis reference laboratory, and national tuberculosis surveillance databases were matched to the Electronic Drug-Resistant Tuberculosis Register. We assessed baseline resistance prevalence, mutations, transmission, cumulative resistance incidence, and odds ratios (ORs) associating risk factors for resistance with patient outcomes. FINDINGS: Between Jan 1, 2015, and July 31, 2019, 8041 patients had surveillance samples submitted, of whom 2023 were included in the cross-sectional analysis and 695 in the longitudinal analysis. Baseline bedaquiline resistance prevalence was 3·8% (76 of 2023 patients; 95% CI 2·9-4·6), and it was associated with previous exposure to bedaquiline or clofazimine (OR 7·1, 95% CI 2·3-21·9) and with rifampicin-resistant or MDR tuberculosis with additional resistance to either fluoroquinolones or injectable drugs (pre-extensively-drug resistant [XDR] tuberculosis: 4·2, 1·7-10·5) or to both (XDR tuberculosis: 4·8, 2·0-11·7). Rv0678 mutations were the sole genetic basis of phenotypic resistance. Baseline resistance could be attributed to previous bedaquiline or clofazimine exposure in four (5·3%) of 76 patients and to primary transmission in six (7·9%). Odds of successful treatment outcomes were lower in patients with baseline bedaquiline resistance (0·5, 0·3-1). Resistance during treatment developed in 16 (2·3%) of 695 patients, at a median of 90 days (IQR 62-195), with 12 of these 16 having pre-XDR or XDR. INTERPRETATION: Bedaquiline resistance was associated with poorer treatment outcomes. Rapid assessment of bedaquiline resistance, especially when patients were previously exposed to bedaquiline or clofazimine, should be prioritised at baseline or if patients remain culture-positive after 2 months of treatment. Preventing resistance by use of novel combination therapies, current treatment optimisation, and patient support is essential. FUNDING: National Institute for Communicable Diseases of South Africa.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Clofazimine/therapeutic use , Cross-Sectional Studies , Diarylquinolines/therapeutic use , Humans , Longitudinal Studies , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Rifampin/pharmacology , Rifampin/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology
2.
PLoS Negl Trop Dis ; 15(7): e0009635, 2021 07.
Article in English | MEDLINE | ID: covidwho-1329131

ABSTRACT

BACKGROUND: Protective effects of Bacillus Calmette-Guérin (BCG) vaccination and clofazimine and dapsone treatment against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been reported. Patients at risk for leprosy represent an interesting model for assessing the effects of these therapies on the occurrence and severity of coronavirus disease 2019 (COVID-19). We assessed the influence of leprosy-related variables in the occurrence and severity of COVID-19. METHODOLOGY/PRINCIPAL FINDINGS: We performed a 14-month prospective real-world cohort study in which the main risk factor was 2 previous vaccinations with BCG and the main outcome was COVID-19 detection by reverse transcription polymerase chain reaction (RT-PCR). A Cox proportional hazards model was used. Among the 406 included patients, 113 were diagnosed with leprosy. During follow-up, 69 (16.99%) patients contracted COVID-19. Survival analysis showed that leprosy was associated with COVID-19 (p<0.001), but multivariate analysis showed that only COVID-19-positive household contacts (hazard ratio (HR) = 8.04; 95% CI = 4.93-13.11) and diabetes mellitus (HR = 2.06; 95% CI = 1.04-4.06) were significant risk factors for COVID-19. CONCLUSIONS/SIGNIFICANCE: Leprosy patients are vulnerable to COVID-19 because they have more frequent contact with SARS-CoV-2-infected patients, possibly due to social and economic limitations. Our model showed that the use of corticosteroids, thalidomide, pentoxifylline, clofazimine, or dapsone or BCG vaccination did not affect the occurrence or severity of COVID-19.


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Leprosy/drug therapy , Leprosy/epidemiology , Adrenal Cortex Hormones/therapeutic use , BCG Vaccine/administration & dosage , Brazil/epidemiology , COVID-19/diagnosis , COVID-19 Testing , Clofazimine/therapeutic use , Cohort Studies , Dapsone/therapeutic use , Humans , Pentoxifylline/therapeutic use , Prospective Studies , Risk Factors , SARS-CoV-2/isolation & purification , Survival Analysis , Thalidomide/therapeutic use , COVID-19 Drug Treatment
3.
Postgrad Med J ; 98(e2): e124, 2022 03.
Article in English | MEDLINE | ID: covidwho-1166565
4.
Nature ; 593(7859): 418-423, 2021 05.
Article in English | MEDLINE | ID: covidwho-1137788

ABSTRACT

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Subject(s)
Antiviral Agents/pharmacology , Clofazimine/pharmacology , Coronavirus/classification , Coronavirus/drug effects , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Biological Availability , Cell Fusion , Cell Line , Clofazimine/pharmacokinetics , Clofazimine/therapeutic use , Coronavirus/growth & development , Coronavirus/pathogenicity , Cricetinae , DNA Helicases/antagonists & inhibitors , Drug Synergism , Female , Humans , Life Cycle Stages/drug effects , Male , Mesocricetus , Pre-Exposure Prophylaxis , SARS-CoV-2/growth & development , Species Specificity , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Transcription, Genetic/drug effects , Transcription, Genetic/genetics
5.
Med Hypotheses ; 150: 110535, 2021 05.
Article in English | MEDLINE | ID: covidwho-1082986
SELECTION OF CITATIONS
SEARCH DETAIL